The asymmetric segregation of damaged proteins is stem cell–type dependent
نویسندگان
چکیده
Asymmetric segregation of damaged proteins (DPs) during mitosis has been linked in yeast and bacteria to the protection of one cell from aging. Recent evidence suggests that stem cells may use a similar mechanism; however, to date there is no in vivo evidence demonstrating this effect in healthy adult stem cells. We report that stem cells in larval (neuroblast) and adult (female germline and intestinal stem cell) Drosophila melanogaster asymmetrically segregate DPs, such as proteins with the difficult-to-degrade and age-associated 2,4-hydroxynonenal (HNE) modification. Surprisingly, of the cells analyzed only the intestinal stem cell protects itself by segregating HNE to differentiating progeny, whereas the neuroblast and germline stem cells retain HNE during division. This led us to suggest that chronological life span, and not cell type, determines the amount of DPs a cell receives during division. Furthermore, we reveal a role for both niche-dependent and -independent mechanisms of asymmetric DP division.
منابع مشابه
A mechanism for the segregation of age in mammalian neural stem cells.
Throughout life, neural stem cells (NSCs) generate neurons in the mammalian brain. Using photobleaching experiments, we found that during cell division in vitro and within the developing mouse forebrain, NSCs generate a lateral diffusion barrier in the membrane of the endoplasmic reticulum, thereby promoting asymmetric segregation of cellular components. The diffusion barrier weakens with age a...
متن کاملAsymmetric Segregation of Damaged Cellular Components in Spatially Structured Multicellular Organisms
The asymmetric distribution of damaged cellular components has been observed in species ranging from fission yeast to humans. To study the potential advantages of damage segregation, we have developed a mathematical model describing ageing mammalian tissue, that is, a multicellular system of somatic cells that do not rejuvenate at cell division. To illustrate the applicability of the model, we ...
متن کاملCreating Age Asymmetry: Consequences of Inheriting Damaged Goods in Mammalian Cells.
Accumulating evidence suggests that mammalian cells asymmetrically segregate cellular components ranging from genomic DNA to organelles and damaged proteins during cell division. Asymmetric inheritance upon mammalian cell division may be specifically important to ensure cellular fitness and propagate cellular potency to individual progeny, for example in the context of somatic stem cell divisio...
متن کاملFusion of Protein Aggregates Facilitates Asymmetric Damage Segregation
Asymmetric segregation of damaged proteins at cell division generates a cell that retains damage and a clean cell that supports population survival. In cells that divide asymmetrically, such as Saccharomyces cerevisiae, segregation of damaged proteins is achieved by retention and active transport. We have previously shown that in the symmetrically dividing Schizosaccharomyces pombe there is a t...
متن کاملBrief UltraRapid Communication Asymmetric Chromatid Segregation in Cardiac Progenitor Cells Is Enhanced by Pim-1 Kinase
Rationale: Cardiac progenitor cells (CPCs) in the adult heart are used for cell-based treatment of myocardial damage, but factors determining stemness, self-renewal, and lineage commitment are poorly understood. Immortal DNA strands inherited through asymmetric chromatid segregation correlate with self-renewal of adult stem cells, but the capacity of CPCs for asymmetric segregation to retain im...
متن کامل